Reg. No.:			
	1 1		

Question Paper Code: 50903

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

Fourth Semester

Computer Science and Engineering

CS 3452 - THEORY OF COMPUTATION

(Common to : Computer Science and Engineering (Artificial Intelligence and Machine Learning)/Computer Science and Engineering (Cyber Security)/
Information Technology)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. How will you prove the group of statements together? Justify.
- 2. Draw the transition diagram to recognize a constant.
- 3. Write the regular expression for the language L = {Set of string with even number of 1's followed by odd number of 0's}.
- 4. Let $\Sigma = \{0, 1\}$ and $\Sigma' = \{a, b, c\}$ with h(0) = ab, h(1) = ac. Find homomorphic image of $L = \{010, 0010, 1010\}$.
- 5. Write the Chomsky hierarchy of grammar.
- 6. Mention the language accepted by empty stack and final state.
- 7. What is meant by reachable symbol?
- 8. List any four closure properties of CFL.
- 9. When do you say a problem is decidable? Give example.
- 10. What is intractable problem? Give example.

PART B — $(5 \times 13 = 65 \text{ marks})$

- 11. (a) (i) Prove that the statement "if $n \ge 5$, then n can be written as a sum of 2's and 3's" by inductive principle. (7)
 - (ii) Construct a DFA that accepts the string over an alphabet {0,1}, number of 0's is multiples of 3.

Or

(b) (i) In Fig. 11(b), find the equivalent DFA for the following NFA. (7)

Fig. 11(b)

- (ii) Prove that the language L is accepted by NFA with ε -transition, then there exist DFA also accept the same language L. (6)
- 12. (a) (i) From Fig. 12(a), find the regular expression for the following DFA. (8)

Fig. 12(a)

(ii) Construct an NFA for the regular expression (01+10)* 10*. (5)

Or

- (b) (i) Show that the language $L = \{0^n 1^{2n} \mid n > 0\}$ is not regular. (8)
 - (ii) Prove if L and M are regular language, then so is L-M. (5)
- 13. (a) (i) Construct a PDA that accept the language $L = \left\{ a^m b^n c^n d^m \mid n, m \ge 1 \right\} \text{ by empty stack.} \tag{7}$
 - (ii) Prove that if PDA P is constructed from CFG G, then L(P) = L(G). (6)

 \cap r

(b) (i) Construct a CFG G which accepts the language L(M) where $\mathbf{M} = (\{q_0,q_1\},\{a,b\},\{z_0,z\},\,\delta\,,q_0,z_0,\varphi)$ where δ is given by (7) $\delta(q_0,\alpha,z_0) = (q_0,zz_0)$ $\delta(q_0,a,z) = (q_0,zz)$ $\delta(q_0,b,z) = (q_1,\varepsilon)$ $\delta(q_1,b,z) = (q_1,\varepsilon)$ $\delta(q_1,\varepsilon,z_0) = (q_1,\varepsilon)$

- (ii) Grammar $G: S \to S1S \mid 0$, Is this grammar G is ambiguous? Justify. (6)
- 14. (a) (i) Convert the CFG into CNF $S \to AB$ $A \to \alpha AA \mid \varepsilon$ $B \to bBB \mid \varepsilon$ (8)
 - (ii) Prove that $L = \{a^n \mid n \text{ is perfect square}\}\$ is not context free. (5)

Or

(b) (i) Design a Turing Machine to compute $f(m,n) = m - n, if \ m \ge n$ $= 0, \ if \ m < n$ (8)

- (ii) Explain the programming techniques for Turing Machine. (5)
- 15. (a) (i) Let $\Sigma = \{0, 1\}$, Let A and B be the list of string defined as

	List A	List B		
i	w_{i}	x_{i}		
1	1	10		
2	110	0		
3	0	11		

Find the instance of MPCP. (7)

(ii) Show that 3-CNF SAT is NP complete. (6)

Or

- (b) Find the following languages are recursively enumerable.
 - (i) Union of recursively enumerable languages. (7)
 - (ii) L and complement of L are recursively enumerable. (6)

16. (a) Construct a minimal state DFA and find the regular expression for the DFA. (15)

Or

(b) Construct a Turing Machine to implement the multiplication operation $f(m,n) = m^*n$, where m and n are positive numbers and simulate their action as input 5^*4 . (15)